Arsenic hyperaccumulation by ferns: A field study in northern NSW

Nabeel Khan NiaziA, Balwant SinghA, Lukas Van ZwietenB and Anthony George KachenkoC

AFaculty of Agriculture, Food and Natural Resources, University of Sydney, NSW, Sydney, Australia, Email nabeel.niazi@sydney.edu.au ; balwant.singh@sydney.edu.au
BEnvironmental Centre of Excellence, Department of Primary Industries, NSW, Wollongbar, Australia, Email lukas.van.zwieten@dpi.nsw.gov.au
CNursery & Garden Industry Australia, Epping, NSW, Sydney, Australia, Email anthony.kachenko@ngia.com.au

Abstract
Historical applications of arsenic-based pesticides to control cattle ticks has resulted in large expanses of As contaminated dip sites across Australia. A field experiment was conducted to evaluate the extraction of As using As hyperaccumulating ferns, Pityrogramma calomelanos (L.) Link var. austroamericana (Domin) Farw. (Gold dust fern) and Pteris vittata L. (Chinese brake fern), at a disused As contaminated cattle dip site at Wollongbar, in northern New South Wales (NSW), Australia. Arsenic concentrations in the fronds of Pityrogramma calomelanos var. austroamericana and Pteris vittata were 1262–3941 mg/kg and 775–2569 mg/kg dry weight (DW), respectively. Our results showed that both ferns successfully accumulated As under field conditions, however, As removal rate and bioaccumulation factor was higher in Gold dust fern (3–5) than in Chinese brake fern (1–3).

Key Words
Hyperaccumulation, cattle dip sites, phytoremediation, phosphate extractable, contamination

Introduction
Arsenic has been classified as a toxic and carcinogenic metalloid which exists in the environment in both organic and inorganic forms. The inorganic form of As is supposed to be more common in soils and found in two main oxidation states, arsenate (AsV) and arsenite (AsIII), the later being more toxic and available than AsV (Masscheleyn et al., 1991). Both natural processes and anthropogenic activities are responsible for the release of As in soil and water bodies. Mining, smelting, use of pesticides and herbicides in agriculture, wood treatment with CCA and tanning operations are some of the major human activities causing As contamination in soil (Smith et al., 1998).

Arsenic-based pesticides have been widely used at the cattle dip sites throughout the world including Australia. From the early 1900s to 1955, prior to the introduction of dichlorodiphenyltrichloroethane (DDT), more than 1600 dips were constructed in northern NSW Australia, where arsenicals were used as the dipping solution to control the cattle ticks (Smith et al., 1998). Soil As contamination around such sites needs attention due to the presence of toxic and bioavailable forms of As.

Remediation of the contaminated soils includes the excavation, capping, chemical immobilization and phytoremediation or phytoextraction (Gonzaga et al., 2006). Phytoextraction of the As contaminated soils, using ferns as hyperaccumulators, has emerged as an effective remediation strategy, which provides a cost-effective and environmental friendly option as compared to other remediation methods (Kertulis-Tartar et al. 2006). The bioaccumulation factor (BF; ratio of the As concentration in fronds to total As in soil) and translocation factor (TF; ratio of As concentration in fronds to total As in roots) determine the capability and efficiency of the plants to remove the As from soil (Ma et al., 2001; Gonzaga et al., 2006).

Pteris vittata L. (Chinese brake fern) is a well known As hyperaccumulator that can survive in soil with As concentrations of up to 1500 mg/kg and accumulate As in fronds > 3000 mg/kg DW (Tu and Ma 2002; Kertulis-Tartar et al. 2006). Other Pteris and non-Pteris ferns (e.g. Pteris longifolia, Pteris cretica and Pityrogramma calomelanos) have also been identified to accumulate As (Francesconi et al., 2002; Wei et al., 2007). Recently, Kachenko et al., (2007) found that P. calomelanos var. austroamericana (Domin) Farw. (Pteridaceae) can accumulate As in fronds up to 16 415 mg/kg DW in fronds. To our knowledge, there has been no research on the phytoremediation capacity of Gold dust fern under field conditions. The study aims to (1) determine the capability of P. calomelanos var. austroamericana and P. vittata for As hyperaccumulation in the field (2) compare BFs of P. calomelanos var. austroamericana and P. vittata under field conditions.
Methods
Two fern species, *P. vittata* and *P. calomelanos var. austroamericana* were selected for the field experiment. *Pteris vittata* was obtained from the Randwick City Council Nursery, NSW while *P. calomelanos var. austroamericana* was propagated from spores under controlled glasshouse conditions. After eight months of growth, uniform ferns were ready for transplanting in the field.

The field site was located at the Environmental Centre of Excellence, Wollongbar in northern NSW, Australia. It is a disused cattle dip site, where As-based pesticides were used to control the cattle ticks (DIPMAC, 1992). The soil around the dip site was contaminated with variable and high concentration of As from the dipping process and disposal of waste material from the dip.

The study area was selected on the basis of preliminary soil sampling at 0–10 cm depth for total soil As distribution in the area. The selected area was sprayed with Roundup® weed-killer and cleared mechanically prior to planting. In January 2009, fern species were transplanted into hand-excavated holes in two separate plots of 3.15 m² size each, keeping plant to plant distance of 30 cm to give 42 ferns per plot. The plants were watered twice a day using drip irrigation system. Black nylon weed mat was used to minimise the weed growth and a shade cloth was erected over the area to protect ferns from direct sun light exposure.

An intensive soil sampling was done in June 2009, to collect the soil samples at 0–20 cm, 20–40 cm and 40–60 cm depths using a hand-driven soil corer. After five months period, the ferns were harvested at the fresh fronds tip, thoroughly washed and dried in a fan-forced oven at 70 ºC for 48–72 h until a constant weight was obtained.

Soil samples were air dried and ground to obtain < 2 mm fraction which was used to determine the various soil properties as given in Table 1. Sub-samples of soil (< 200 µm) were used to determine the total soil As concentration. Soil samples were digested with a mixture of hydrofluoric and other mineral acids at 125 ºC and diluted with HCl and E-pure water (Huang and Fujii, 1996). Fern samples were digested in a mixture (1:1) of nitric and perchloric acids at 120–180 ºC and diluted with E-pure water (Miller 1998). The digests were analysed for As using a Varian Vista AX CCD inductively coupled plasma atomic emission spectrometer.

Potassium dihydrogen phosphate solution (0.5 M KH₂PO₄) was used to extract the specifically sorbed (bioavailable) As pool in soil with a 1:25 soil to solution ratio and 4 h shaking time (Alam et al., 2007). The As concentration in the phosphate extracts was analysed using a Varian hydride-generation atomic absorption spectrometer.

Table 1. Properties of soil at the Wollongbar experimental site.

<table>
<thead>
<tr>
<th>pH (1:5 CaCl₂)</th>
<th>EC (1:5) (dS/m)</th>
<th>CEC (nmol/kg)</th>
<th>Total carbon (%)</th>
<th>DCB Fe (g/kg)</th>
<th>DCB Al (g/kg)</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.82</td>
<td>0.11</td>
<td>87.5</td>
<td>4.5</td>
<td>158.9</td>
<td>13</td>
<td>16</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

Results
During the course of the experiment, all the ferns survived without symptoms of As phytoxicity. In both species As concentration in fronds increased with the increasing levels of soil As, which indicated the capability of Chinese brake fern and Gold dust fern to grow and tolerate in soils with the high levels (313–1903 mg/kg) of As. The total As concentration in soil was in the range of 393 to 1903 mg/kg for the plot where Chinese brake fern was grown, while it varied between 313 and 1486 mg/kg for Gold dust fern (Table 2). Arsenic concentrations in fronds of the Chinese brake fern and Gold dust fern were in the range of 775–2569 mg/kg DW and 1262–3941 mg/kg DW, respectively (Table 2). Bioaccumulation factor (based on total soil As) for Chinese brake fern and Gold dust fern were between 1–3 and 3–5, respectively. Arsenic concentration in fronds as a function of total and extractable soil As illustrated higher accumulation in Gold dust fern as compared to Chinese brake fern (Figure 1). These results are consistent with the previous studies on Chinese brake fern grown under field or controlled conditions (Zhao et al., 2002; Wei and Chen, 2006). The higher concentration of As and BF in Gold dust fern suggest that this species is more efficient in As extraction under field conditions. Our results are opposite to the earlier studies that have examined As
accumulation in these two species under glasshouse conditions. Kachenko et al. (2007) observed a higher As accumulation capacity for the Chinese brake fern with no toxicity symptoms at 100–500 mg/kg applied As, while Gold dust fern showed toxicity with As concentrations in fronds >3008 mg/kg DW. Similarly, Xu et al. (2009) compared the hyperaccumulation potential of the two fern species in four different soils in a pot experiment, and observed higher As concentrations for Chinese brake fern than the Gold dust fern. At the time of sampling growth of Gold dust fern was better than the Chinese brake fern. To compare the total biomass of both species, one average plant from each of species was harvested above soil. The total biomass of the Gold dust fern (80.04 g DW) was almost two times greater than the Chinese brake fern (39.49 g DW).

Table 2. Total and phosphate extractable As concentration in soil and total As concentration in fronds of Chinese brake fern and Gold dust fern.

<table>
<thead>
<tr>
<th>Fern species</th>
<th>Total soil As (mg/kg)</th>
<th>Phosphate extractable As (mg/kg)</th>
<th>As in fronds (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–20 cm</td>
<td>20–40 cm</td>
<td>40–60 cm</td>
</tr>
<tr>
<td>Gold dust fern</td>
<td>Range 313–1486</td>
<td>21–117</td>
<td>29–104</td>
</tr>
<tr>
<td></td>
<td>Mean 753</td>
<td>51</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Median 734</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>SD (±) 284</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>Chinese brake fern</td>
<td>Range 393–1903</td>
<td>25–90</td>
<td>23–105</td>
</tr>
<tr>
<td></td>
<td>Mean 909</td>
<td>51</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Median 878</td>
<td>52</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>SD (±) 354</td>
<td>17</td>
<td>21</td>
</tr>
</tbody>
</table>

Wei and Chen (2006) observed that the As accumulation rate and BFs of the Chinese brake fern were relatively less than the Cretan brake fern (Pteris cretica) on a contaminated mining site, suggesting that As accumulation by Chinese brake fern in the field depends on the various soil properties. In this study, it is not immediately evident why As concentration in the Gold dust fern was higher than the Chinese brake fern, however, we cannot exclude the role of soil properties and field conditions (as compared to glasshouse) affecting the growth behaviour of ferns (Wei and Chen 2006; Xu et al. 2009).

Figure 1. Total As concentration in Chinese brake fern (CBF) and Gold dust fern (GDF) as a function of (a) total soil As and (b) phosphate extractable soil As at 0–20 cm depth.

Arsenic concentration in the Gold dust fronds was better correlated with the total soil As ($r^2 = 0.59$) than the Chinese brake fern ($r^2 = 0.55$). Furthermore, there was a stronger relationship between the As concentration in the Gold dust fern and phosphate extractable soil As at 0–20 cm ($r^2 = 0.67$) and 20–40 cm ($r^2 = 0.53$) depths than the Chinese brake fern ($r^2 = 0.42$ and 0.14, respectively).
Conclusion
Both Gold dust fern and Chinese brake fern accumulated high levels of As in fronds under field conditions. On the basis of the total As concentrations in fronds and BFs, we conclude that the Gold dust fern is more efficient in As hyperaccumulation than the Chinese brake fern, and thus better suited for the remediation of As contaminated dip sites in NSW.

Acknowledgements
Nabeel gratefully acknowledges the Higher Education Commission of Pakistan for the award of PhD scholarship. The authors are thankful to the NSW Environmental Trust for providing the funding for the research project. We would also like to thank George Nastase, Adam Mitchell, Joshua Rust, Victor and Desmond at DPI, Wollongbar for their assistance in the field work.

References