Impacts of soil moisture on trace gas emissions from grassland: a case study on grassland in Northern Ireland

Simone Hepp, Cara Augustenborg, Burkart Dieterich, Tamara Hochstrasser and Christoph Mueller

School of Biology and Environmental Science, University College Dublin, Ireland.

Abstract
The impacts of soil moisture on trace gas emissions from grassland were investigated by an in situ measurement conducted over two sampling periods from 2008–2009 in a typical agricultural ecosystem of Northern Ireland. Gas samples were taken with the closed chamber technique and analysed for carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Wet soil conditions led to high emissions of CH4 and N2O and a loss of applied nitrogen (N) fertilizer. These results are valuable toward the development of practical measures for reducing greenhouse gas emissions from agriculture.

Key Words
Grasslands, greenhouse gases, fertilizer.

Introduction
With rising global demand for food production, the area of land under cultivation and inputs of chemical fertilizers into agricultural ecosystems are expected to further increase (Galloway et al. 2008). As a result, the emission of greenhouse gases (GHGs) from agriculture may be intensified and their impact on global climate may become more serious. Therefore, greater understanding of the processes of trace gas emissions from agriculture must be developed (Batjes and Bridges 1992). This understanding will result in the development of practical measures for reducing trace gas emissions from agriculture.

Agriculture is estimated to contribute approximately 25%, 65% and 90% of global anthropogenic emissions of CO2, CH4, and N2O, respectively (Duxbury 1994). Carbon dioxide is taken up by plants during photosynthesis and released through respiration processes from vegetation and soil organisms (Byrne et al. 2007). The CO2 released from respiration depends on decomposition processes, which are affected by soil water status (Parton et al. 1987). Methane is commonly oxidized into CO2 in unsaturated soils leading to an uptake of atmospheric CH4 (Del Grosso et al. 2000). Soil production of CH4 is associated with poorly drained areas (Gregorich et al. 2005). Synthetic N fertilizer application is the main source of N2O emissions from agriculture (Smith et al. 1997). N2O is produced via nitrification and denitrification processes (Wrage et al. 2004).

The impact of soil moisture on N2O and CH4 emission from grasslands and forest soil has been well discussed (Zheng et al. 2002) and is considered a significant factor for regulating N2O emissions. However, land management can affect sources and sinks of GHGs in grasslands in opposing manners. For example, increased fertilizer input generally leads to an increase in N2O emissions, but can also contribute to increased C sequestration in the soil (Conant et al. 2005). Therefore, it is important to examine the impact of soil properties on all significant GHGs simultaneously to determine a net GHG effect from various agricultural management practices. The objective of this study was to determine the effect of soil moisture on trace gas emissions from a grassland system in Northern Ireland.

Methods
Site and Experimental Design
The experimental field site was located in Crossnacreevy, Northern Ireland (54°32’ N, 05°52’ W; 390 m above sea level) as part of the Agri-Food and Bioscience Institute in Northern Ireland (AFBINI). The soil is a medium loam soil. Two nitrogen fertilizer treatments, high (420 kg N/ha/y) and low (105 kg N/ha/y), were applied to three replicates of three different grass species (Lolium perenne, Phleum pratense, Dactylis glomerata) combined with clover (Trifolium repens). Each year fertilizer was applied directly after harvest (nine times on high N, three times on low N). The data described in this paper were obtained during the last fertilizer application (40 kg N/ha) for the high N site in September of each year (2008 and 2009). Measurements were taken simultaneously at the low N sites, though no fertilizer was applied to these sites at that time.
Sampling and flux calculation
For obtaining the gas samples the closed chamber technique (Hutchinson and Mosier 1981) was used (chamber size: 40x40x10 cm). Three samples were taken with 60 ml plastic syringes, closed with a 3-way stopcock over a period of 30 minutes immediately (t0), 15 minutes (t15), and 30 minutes (t30) after the chamber was closed. Air pressure was obtained from the Aldergrove weather station (Latitude: 54.65; Longitude: -6.217), approximately 30 km from the field site. Temperature in the chambers was measured with a thermometer. Soil moisture was measured by soil probes buried at approximately 7 cm depth at the low N site. Analysis for CO2, N2O and CH4 was carried out on a gas chromatographer (Shimadzu GC-2024) with automated injection system (Loftfield et al. 1997). The flux rates were calculated by using the ideal gas law and linear regression with chamber temperature and average air pressure during cover period. An exponential equation (Hutchinson and Mosier 1981) was used if R-squared was greater than 0.985 but less than 1.

Results
Data from all three grass varieties were averaged for the high and low N sites because there was no significant difference in emissions between grass species. Figure 1a presents the fluxes for CO2, which were in 2008 higher on high N plots (mean = 173.6 ± 30.1 mg CO2-C/m2/h) before and after cutting compared to low N sites (mean = 144.1 ± 26.9 mg CO2-C/m2/h). Similar results, though slightly lower, were found for 2009 after harvesting the plots.

Figure 1b presents high N2O emissions after fertilizer application on high N plots in both years. In both 2008 and 2009, the highest fluxes were measured one day after fertilizing the site. The maximum N2O emissions from the high N plots were 1280.7 ± 606.7 µg N2O-N/m2/h and 2015.2 ± 763.4 µg N2O-N/m2/h, for 2008 and 2009 respectively.

Figure 1c presents soil moisture and CH4 emissions which were both lower in September 2009 than in September 2008. In 2008, the highest average value of methane production was higher on the low N site (50.5 ± 42.9 µg CH4-C/m2/h) compared to the high N site (18.3 ± 17.5 µg CH4-C/m2/h). This correlation, though lower, was also observed in 2009. Due to heavy rainfall in September of both years, the soil was completely saturated to the soil surface during the measurement period. Therefore, soil moisture data should also apply to the soil layers above 7 cm depth as the spot for main microbial activity was found to be in the top soil layers just a few centimeters thick (Koschorreck and Conrad 1993). Slightly higher soil moisture was observed in 2008, due to heavier rainfall in the weeks before the sampling period (data not shown).

Conclusion
N2O fluxes
As in previous research, the present study found that N2O production was enhanced by reduced aeration via soil saturation (Wrage et al. 2004) and large N-input. This emission can be caused not only by denitrification via microbial activity but also by fungal denitrification (Laughlin 2002). Due to the Nitrates Action Programme Regulations for Northern Ireland (DOE 2006), the fertilizer in this experiment had to be applied before the 15th of September even though the site was very wet. Therefore, it was hypothesised that the site would lose high amounts of N. Glatzel and Stahr (2001) found lower emissions of N2O (50 and -20 µg N2O-N/m2/h) after application of cattle slurry (200 kg/ha/y) on a well aerated grassland site. Lower fluxes than in the present study (489 µg N2O-N/m2/h) were also found by Lampe et al. (2006), who investigated the effect of mineral fertilizer and slurry application on N2O emissions (489 µg N2O-N/m2/h) on aerated grazed grassland.

CH4 fluxes
In this experiment, temporarily high rainfall events caused anaerobic soil conditions leading to CH4 emissions. Well-aerated grassland usually shows a net uptake of CH4 (Mosier et al. 1991, Kammann et al. 2001). Induced CH4 emission in grassland has also been observed in 5cm soil depth after autumn rainfall (Kammann et al. 2001). In addition, lab experiments have verified an increase in CH4 production after a long lag phase either due to flooding (Wang and Bettany 1997) or anaerobic incubation (Peters and Conrad 1995). Similar results were observed in the present study during the first measurement period in 2008, when a slight but steady increase in CH4 production on already CH4 emitting plots was found over 12 days of sampling. The effect of higher emissions from the low N plots could be a reason of higher water content on the low N site, as this effect is enhanced under slightly higher soil moisture in 2008.

CO2 fluxes
A correlation was observed between higher CO2 emissions and lower CH4 emissions on the high N site and
conversely lower CO₂ efflux and higher CH₄ production on the low N site. This could also be explained by higher soil moisture content on the low N site which could be observed indirectly through the higher production of methane. This effect was more distinct in 2008 with slightly higher measured water content. High water content leads to a limitation of soil respiration through a slower diffusion rate of oxygen in water (Conant et al. 2004).

Acknowledgements
This work was funded by the Irish Department of Agriculture, Fisheries and Food as part of Research Stimulus Funding 07-506: “Evaluating Irish grassland as a source for bioenergy: Environmental impacts and long-term sustainability”. We would like to thank the Agri-Food and Bioscience Institute in Northern Ireland (AFBNI) for allocation of the field site. Also we would like to thank Dr. Catherine Watson, Dr. Ronnie Laughlin, Dr. Charlotte Connolly, Dr. Aidan Farrell and Uta Priegnitz for technical support.

Figure 1. Fluxes for a) carbon dioxide (mg CO₂-C/m²/h), b) nitrous oxide (µg N₂O-N/m²/h) and c) methane (µg CH₄-C/m²/h) from Crossnacreevy, Northern Ireland during measurement periods in September 2008 and 2009 compared to c) vwc, volumetric water content (m³/m³)
References


© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World

1 – 6 August 2010, Brisbane, Australia. Published on DVD.